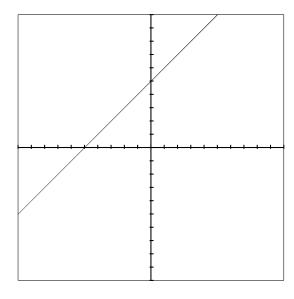

Every vertical line can be expressed by a unique equation of the form x = c, where c is a constant. Such lines have undefined slope (or, one may say that the slope is ∞).

Every other line has can be expressed by a unique equation of the form y = mx + b. This is called slope-intercept form, where m is the slope and b is the y-value of the y intercept.

Example 1. Consider the graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

Solution. By examining the graph, we see that the y-intercept of the line is (0, -5) and that the x-intercept is (3, 0). The slope is the change in y divided by the change in x, which is $\frac{5}{3}$. Thus $m = \frac{5}{3}$ and b = -5. \square

Standard Form: $y = \frac{5}{3}x - 5$


m: $\frac{5}{3}$ b: -5

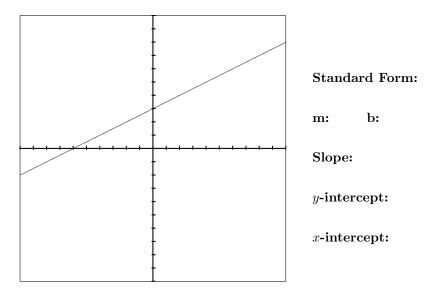
Slope:

y-intercept: (0, -5)

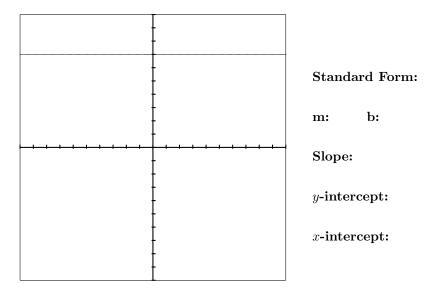
x-intercept: (3,0)

Problem 1. Consider this graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

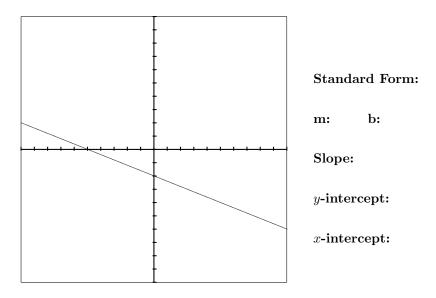
Standard Form:

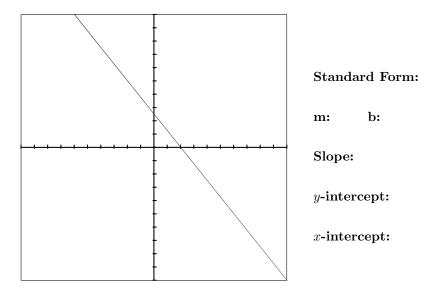

m: b:

Slope:


y-intercept:

x-intercept:


Problem 2. Consider this graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

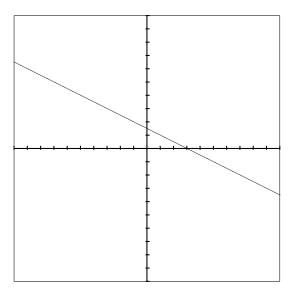

Problem 3. Consider this graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

Problem 4. Consider this graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

Problem 5. Consider this graph of a line. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line.

Example 2. Consider the equation 3x + 6y = 9. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Solution. First we must solve for y. Subtract 3x from both sides to get 6y = -3x + 9. Divide by 6 to get


$$y = -\frac{1}{2}x + \frac{3}{2} \, .$$

Thus $m = -\frac{1}{2}$ and $b = \frac{3}{2}$.

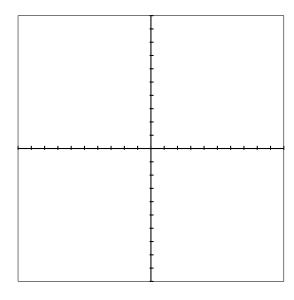
The slope is the number in front of the x when the equation is in slope-intercept form (that is, the slope is m). In this case, the slope is $-\frac{1}{2}$. This is negative, so the graph goes down.

The y-intercept is the point where the line intersects the y-axis. This is obtained by plugging in 0 for x, and solving for y. In this case, we obtain $y = \frac{3}{2}$. The the y-intercept is the point $(0, \frac{3}{2})$.

The x-intercept is the point where the line intersects the x-axis. This is obtained by plugging in 0 for y and solving for x. In this case, we obtain x = 3. Thus the x-intercept is the point (3,0).

Equation: 3x + 6y = 9

Standard Form: $y = -\frac{1}{2}x + \frac{3}{2}$


m: $-\frac{1}{2}$ b: $\frac{3}{2}$

Slope: $-\frac{1}{2}$

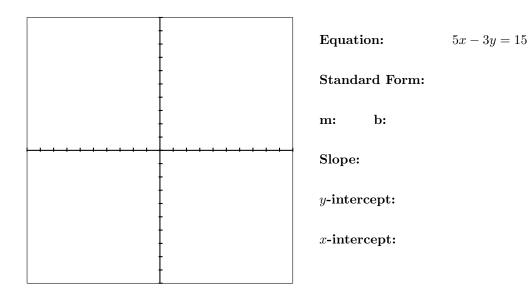
y-intercept: $(0,\frac{3}{2})$

x-intercept: (3,0)

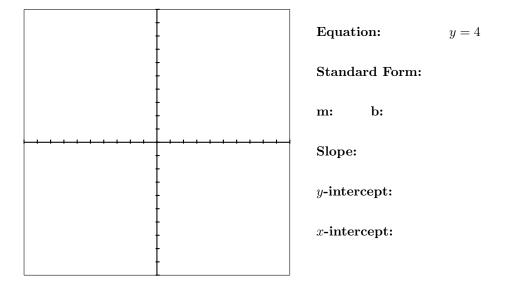
Problem 6. Consider the equation y = 2x - 3. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Equation: y = 2x - 3

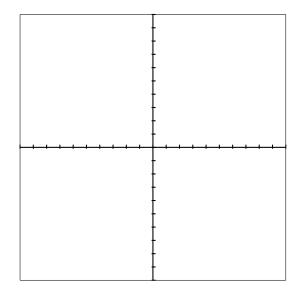
Standard Form:


m: b:

Slope:


y-intercept:

x-intercept:


Problem 7. Consider the equation 5x - 3y = 15. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

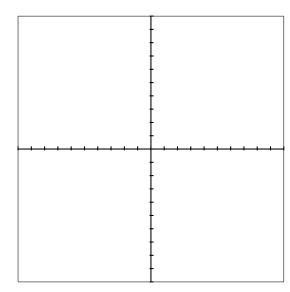
Problem 8. Consider the equation y = 4. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Problem 9. Consider the equation -5y = 25 - 10x. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Equation:

-5y = 25 - 10x

Standard Form:


m: b:

Slope:

y-intercept:

x-intercept:

Problem 10. Consider the equation $\frac{x}{y} = -2$. Find the standard form (y = mx + b) of the line, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Equation:

 $\frac{x}{y} = -2$

Standard Form:

m: b:

Slope:

y-intercept:

x-intercept: